Metallkomplexe mit biologisch wichtigen Liganden, XLVI¹⁾

Platin(II)-Komplexe mit Vorstufen von ungesättigten α-Aminosäuren

Herbert Wanjek, Manfred Steimann²⁾ und Wolfgang Beck*

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 29. Februar 1988

Die α -Aminosäurcester-Platinkomplexe *cis*-Cl₂Pt(NH₂CHRCO₂-Et), (R = H. Me, CH₂CHMe₂) setzen sich mit *tert*-Butylhypochlorit zu den N-Chlor- α -aminosäurcester-Verbindungen *trans*-Cl₂Pt[NH(Cl)CHRCO₂Et]₂ um. 4-Alkyliden-1,3-oxazolidin-2,5dion wird an (Ph₃P)₂Pt(C₂H₄) in Abhängigkeit von den Substituenten über die C – C-Doppel- oder die NH-Bindung addiert. Die Struktur des Hydrido-imido-Komplexes *trans*-(Ph₃P)₂(H)Pt –-NC(=CHPh)C(O)OCO (4c) wurde durch Kristallstrukturanalyse bestimmt.

In Fortführung unserer Arbeiten über Metallkomplexe mit Didehydroaminosäuren^{1,3)} interessierte uns auch das Koordinationsverhalten von Didehydroaminosäure-Vorstufen.

Platin(II)-Komplexe mit N-Chloraminosäureestern

 α,β -Didehydroaminosäureester sind aus gesättigten α -Aminosäureestern durch N-Chlorierung mit tert-Butylhypochlorit, Dehydrochlorierung und anschließender Imin-Enamin-Tautomerisierung zugänglich⁴⁾. N-Chlorierungen an Amin-Platin(IV)-Komplexen sind schon seit längerem bekannt⁵⁾. Durch Umsetzung mit Chlor wird am Komplex ein Amin-Ligand zum Dichloramid oxidiert⁶). Die Amingruppen von koordiniertem Ethylendiamin lassen sich zu Monochloramingruppen oxidieren⁷⁾. Die Weiterreaktion kann zur Dehydrochlorierung, Nitrilbildung oder vollständigen Abspaltung des Ethylendiamins führen⁸⁾. Oxidative Dehydrierungen von koordiniertem Ethylendiamin konnten auch an Ruthenium(II)⁹⁾- und Eisen(III)¹⁰⁾-Komplexen mit Iod oder Natriumhypochlorit durchgeführt werden. Aminosäureester-Platin(II)-Komplexe werden mit Chlor oder Brom zu den entsprechenden Platin(IV)-Komplexen oxidiert, wobei kein Angriff am Liganden erfolgt¹¹⁾.

Wir fanden, daß mit *tert*-Butylhypochlorit unter sehr milden Bedingungen eine Mono-N-chlorierung von an Platin(II) koordinierten Aminosäureestern in 1 ohne Spaltung der Pt-N-Bindung gelingt (1).

Die Koordination der N-chlorierten Aminosäureester in 2 über das N-Atom wird durch die IR- und ¹H-NMR-Daten bewiesen: während die Ausgangskomplexe¹²⁾ zwei bzw. drei vNH-Banden aufweisen, zeigen die N-chlorierten Komplexe nur eine Absorption in diesem Bereich. Die Lage der NH-Deformations- und C=O-Valenzschwingungen ist gegenüber den Ausgangskomplexen zu etwas tieferen Wellenzahlen verschoben. Im Pt-Cl-Valenzschwingungsbereich erscheint nur eine Bande, was auf eine *cis-trans*-Isomerisierung im Verlauf der Reaktion schließen läßt.

Metal Complexes of Biologically Important Ligands, XLVI¹⁾. – Platinum(II) Complexes with Precursors of Unsaturated α-Amino Acids

a-Amino acid ester complexes cis-Cl₂Pt(NH₂CHRCO₂Et)₂ (R = H, Me, CH₂CHMe₂) react with *tert*-butyl hypochlorite to give Nchloro-a-amino acid ester complexes *trans*-Cl₂Pt[NH(Cl)CHR-CO₂Et]₂. Dependent on the substituents 4-alkylidene-1,3-oxazolidine-2,5-dione is added to (Ph₃P)₂Pt(C₂H₄) by the C = C or the NH bond, respectively. The structure of the hydrido imido complex *trans*-(Ph₃P)₂(H)Pt - NC(=CHPh)C(O)OCO (4c) has been determined by X-ray analysis.

In den ¹H-NMR-Spektren wird die NH-Resonanz durch die *N*-Chlorierung um ca. 1.5 ppm zu tieferem Feld verschoben. Die Integration des NH-Signals beweist die Monochlorierung.

Koordinationsverhalten ungesättigter Leuchsscher Anhydride

Ungesättigte Leuchssche Anhydride sind wichtige Vorstufen für Dehydroaminosäure-Derivate. Diese, in 4-Stellung ungesättigte Reste tragenden 1,3-Oxazolidin-2,5-dione 3, lassen sich durch Kondensation von Benzylcarbamat mit α -Ketocarbonsäuren und anschließende Cyclisierung mit Thionylchlorid darstellen¹³⁾. Durch nucleophile Ringöffnungsreaktionen sind hieraus unter CO₂-Eliminierung verschiedene Dehydroaminosäure-Derivate zugänglich¹⁴⁾. Bei der Umsetzung dieser Anhydride mit (Ethylen)bis(triphenylphosphan)platin(0) fanden wir zwei Reaktionsmöglichkeiten:

a) oxidative Addition unter Spaltung der N-H-Bindung,

b) Koordination über die C-C-Doppelbindung.

Während mit R = Me, Ph ausschließlich die Produkte der oxidativen Addition 4a, c isoliert werden, liefert R = Etein Gemisch von 4b und 5a und $R = CHMe_2$ nur den Olefin-Komplex 5b. Dies dürfte auf sterische und Lösungsmittel-Effekte zurückzuführen sein.

Das in ungesättigten Leuchsschen Anhydriden enthaltene Strukturelement **A** ist isoelektronisch zu dem in cyclischen Imiden (**B**). Mit Anionen cyclischer Imide ist eine Reihe von Übergangsmetallkomplexen bekannt¹⁵. Während Succinimid, Phthalimid, Saccharin und Parabansäure oxidativ an Platin(0)¹⁶) und Nickel(0)¹⁷ addiert werden, wirkt Maleinimid als π -Donor und koordiniert ausschließlich über die C-C-Doppelbindung.

Die oxidativen Additionsprodukte 4a-c zeigen im *IR*-Spektrum die charakteristische vPt-H-Absorption bei 2180 cm⁻¹. Wie bei der oxidativen Addition cyclischer Imide verschiebt sich die Lage der C=O-Valenzschwingungen zu tieferen Wellenzahlen. Das Auftreten von zwei IR-Absorptionen zwischen 1800 und 1700 cm⁻¹, die den symmetrischen und antisymmetrischen CO-Schwingungen zugeordnet werden, ist charakteristisch für koordinierte cyclische Imidat-Ionen. Die geringfügige Verschiebung der C=C-Valenzschwingung zu tieferen Wellenzahlen läßt sich auf den mehr anionischen Charakter des Heterocyclus zurückführen.

Die π -koordinierten Komplexe **5a**, **b** zeigen erwartungsgemäß keine Pt-H-Valenzschwingungen. Charakteristisch ist das Fehlen der C=C-Valenzschwingung im olefinischen Bereich zwischen 1690 und 1640 cm⁻¹. Durch die Koordination wird diese Bande zu tieferen Wellenzahlen verschoben. Wegen der Überlagerung mit den intensiven Banden der Triphenylphosphangruppen ist keine eindeutige Zuordnung möglich. Die Verschiebung der C=O-Valenzschwingungen ist nicht so stark wie bei den oxidativen Additionsprodukten.

Die ¹H-NMR-Spektren der Verbindungen 4a-c zeigen typische Signale für Hydrid-Wasserstoffatome bei $\delta =$ -15.5. Die trans-Konfiguration wird durch die Kopplung mit den zwei äquivalenten ³¹P-Kernen zu einem Triplett ($J \approx 13.5$ Hz) und durch die ³¹P-NMR-Spektren belegt: diese zeigen nur jeweils ein ³¹P-Signal, das von ¹⁹⁵Pt-Satelliten umgeben ist.

Struktur von 4c im Kristall

Die Kristallstrukturanalyse von 4c belegt die Koordination des ungesättigten Leuchsschen Anhydrids über das Imidat-N-Atom. Wie bereits aus den NMR-Spektren abgeleitet wurde, stehen die Triphenylphosphanliganden in *trans*-Stellung (Abb. 1). Der Heterocyclus ist weitgehend planar ge-

Abb. 1. Molekülstruktur von 4c im Kristall (20% Aufenthaltswahrscheinlichkeit)

Tab. 1. Atomkoordinaten	$(\times 10^4)$	und	isotrope	thermische	Para-			
meter $(pm^2 \cdot 10^{-1})$ von 4c								

	x	У	Z	IJ
Pt(1)	1990(1)	7500	5930(1)	47(1)*
P(1)	2000(2)	5990(2)	7150(2)	47(1)*
C(1)	3439(4)	6025(4)	7363(6)	63(4)
C(2)	4094	5643	7423	79(4)
C(3)	4171	4723	7350	75(4)
C(4)	3592	4186	7217	79(4)
C(5)	· 2937	4568	7157	54(4)
C(6)	2861	5488	7230	56(4)
C(7)	1836(4) .	5150(5)	8842(6)	73(4)
C(8)	1475	4981	9638	74(4)
C(9)	846	5406	9801	78(4)
C(10)	579	6000	9169	81(4)
C(11)	940	6170	8373	58(3)
C(12)	1569	5745	8210	55(3)
C(13)	1033(5)	4697(6)	6594(5)	78(4)
C(14)	668	4222	5942	104(6)
C(15)	802	4363	5029	97(5)
C(16)	1302	4980	4768	66(4)
C(17)	1658	5455	5420	57(3)
C(18)	1533	5314	6333	48(3)
N(1)	1381(7)	7500	5717(10)	49(4)
C(19)	1474(9)	7500	4784(11)	44(4)
C(20)	804(9)	7500	4369(14)	58(5)
C(21)	697(10)	7500	5888(15)	67 (6)
0(1)	623(7)	7500	3585(10)	83(4)
0(2)	318(6)	7500	5052(9)	68(4)
0(3)	362(8)	7500	6553(10)	89(5)
C(22)	2017(10)	7500	4267(13)	60(5)
C(23)	3207(9)	7500	3595(14)	76(6)
C(24)	3924(9)	7500	3625(15)	91(7)
C(25)	4248(12)	7500	4459(11)	92(7)
C(26)	3838(8)	7500	5225(14)	73(6)
C(27)	3122(9)	7500	5197(12)	71(6)
C(28)	2797(9)	7500	4362(10)	61(5)
S(1)	2575(5)	/078(6)	10601(7)	97(3)*
0(4)	2581(10)	7500	11505(14)	133(7)+
C(29)	1776(16)	7500	10163(23)	145(12)*
0(30)	3151(19)	/500	9831(25)	170(14)+
H(50)	2371(50)	7500	7786(64)	6(26)

* Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} Tensors.

+ DMŠO.

baut und steht senkrecht auf der Koordinationsebene $P_2Pt(H)N$, wie es häufig bei Komplexen mit heterocyclischen Liganden gefunden wird (vgl. z. B. Lit.^{15b,18,19)}). An der C-C-Doppelbindung sind die Phenylgruppe und das Imidat-N-Atom *cis*-ständig. Der auffällig große Pt-N-Bindungsabstand von 215.1 pm ist auf den starken *trans*-Einfluß des Hydridliganden zurückzuführen. Alle übrigen Bindungsabstände entsprechen der Erwartung.

Der im Vergleich zum theoretischen P-Pt-P-Winkel von 180° stark verkleinerte Winkel (163.6°) zeigt ein Zusammenwandern der Triphenylphosphangruppen in Richtung des sterisch anspruchslosen Hydridliganden. Ähnlich kleine Winkel findet man z. B. in *trans*-(Ph₃P)₂(H)PtN-(O)CC(O)ONCMe¹⁸⁾ und *trans*-[(Ph₃P)₂(H)Pt(PhHNNC₃-H₆)]^{+ 20)}.

Tab. 2. Bindungslängen (pm) und -winkel (°) von 4c

Pt(1)-P(1)	229.3(3)		Pt(1)	~N(1)	215.	1(14	1)	
Pt(1)-H(50)	146.8(93)		Pt(1)	-P(1;	a)	229.	3(3)	6	
P(1) - C(6)	183.4(9)	1	P(1)~	-C(12)	181.	7(9)	(
P(1)-C(18)	182,2(9)	1	N(1)~	-C(19)	139.	5(22	2)	
u(1) - C(21)	134.9(24)		C(19)	-C(2	0)	143.	6(25	5)	
C(19) - C(22)	130.0(26)	1	C(20)	-0(1)	121.	4(25	5)	
$C(20) \sim O(2)$	138.4(23)		C(21)	-0(2	}	144.	0(25	5)	
C(21) = O(3)	118.0(26)	1	C(22)	-C(2	8)	151.	8(26	5)	
C(23) - C(24)	138.7(24)	1	C(23)	-C(2	8)	138.	7(25	5)	
C(24) - C(25)	138.7(28)		C(25)	-C(2	6)	138.	7 (27	1)	
C(26) - C(27)	138.7(23)	1	C(27)	-C(2	8)	138.	7(24	1)	
S(1) - O(4)	148.4(21)	1	S(1)-	-C(29)	179.	3 (3)	L)	
S(1) - C(30)	171.7(36)		S(1)-	-S(1a	}	127.	0(17	1)	
O(4) - S(1a)	148.4(21)	1	C(29)	-s(1	a)	179.	3(3)	1)	
C(30) - S(1a)	171.7(36)	{							
P(1)-Pt(1)-N	(1) 97.1(1) [P(1)-	Pt(1)	-н (5	0)	82	.7((3)
N(1)-Pt(1)-H	(50) 176.9(3	9)	P(1)-	Pt(1)	-P(1	a)	163	.60	(2)
N(1)-Pt(1)-P	(1a) 97.1(1) []	H(50)	-Pt(1	1)-P(1a)	82	.7 ((3)
Pt(1)-P(1)-C	(6) 115.1(3		Pt(1)	-P(1)	-C(1	2)	108	.7((3)
Pt(1)-P(1)-C	(18) 117.0(3)	P(1)-	C(6)-	-C(1)		120	.0((2)
P(1)-C(6)-C(5	5) 120.0(2) ['	P(1)-	C(12)	-C (7)	122	.8((3)
P(1)~C(12)-C	(11) 117.2(3) ['	P(1)-	C(18)	-C(1	3)	122	.0((3)
P(1)~C(18)~C	(17) 117.9(3) '	Pt(1)	-N(1)	-C(1	9)	139	.3((11)
Pt(1)-N(1)-C	(21) 112.4(1	2)	C(19)	-N(1)	-C (2	1)	108	.3((15)
N(1) - C(19) - C	(20) 108.0(1	5) !	N(1)-	C(19)	-C(2	2)	133	.6((17)
C(20)-C(19)-C	C(22) 118.5(1	7)	C(19)	-C(20))-0(1)	132	.2((18)
C(19)-C(20)-C	0(2) 107.5(1	6)	0(1)-	C(20)	-0(2)	120	.3((16)
N(1) - C(21) - O	(2) 109.8(1)	7) :	N(1)-	C(21)	-0(3)	134	.1 ((20)
O(2)-C(21)-O	(3) 116.1(1	7) .	C(20)	-0(2)	-C (2	1)	106	.5((14)
C(19)-C(22)-C	C(28) 138.5(1)	8) -	C(24)	-C(23	3)-C(28)	123	.1((18)
C(23)-C(24)-C	C(25) 118.8(1)	9) (C(24)	-C(25	5)-C(26)	118	.0((19)
C(25)~C(26)~C	C(27) 123.2(1)	8)	C(26)	-C (27	1)-C(28)	118	.6((17)
C(22)~C(28)~C	2(23) 119.6(1	5) [(C(22)	-C(28	3)-C(27)	122	.2((15)
C(23)-C(28)-C	C(27) 118.2(1)	6)	0(4)-	S(1)-	-C(29)	100	.5((13)
O(4)~S(1)-C(30) 115.9(1)	2) (C(29)	-S(1)	-C (3	0)	100	.9((15)
0(4)-S(1)-S(2	1a) 64.7(5) '	C(29)	-S(1)	-S(1	a)	69	. 3 ((5)
C(30)-S(1)-S	(1a) 68.3(5)) :	S(1)-	0(4)-	-S(1a)	50	.7 ((10)
S(1)-C(29)-S	(1a) 41.5(9) ['	S(1)-	C(30)	-s(1	a)	43	.4((11)
-									

Dem Fonds der Chemischen Industrie und der Knoll AG, Ludwigshafen, gilt unser herzlicher Dank für großzügige Förderung. Herrn Prof. Dr. U. Schmidt, Stuttgart, danken wir für wertvolle Hinweise, Herrn Dr. U. Nagel für Diskussionen zur Röntgenstrukturanalyse.

Experimenteller Teil

Allgemeine Arbeitsvorschrift zur Synthese der Platin(II)-Komplexe 2a - c: 1.0 mmol cis-Cl₂Pt(Aminosäureester)₂¹²⁾ wird in 40 ml absol. Dichlormethan vollständig gelöst. Unter Trockeneiskühlung werden langsam 2.13 mmol (0.25 ml) tert-Butylhypochlorit zugetropft, wobei sich die Lösung dunkel färbt. Nach 24 h Rühren, wobei langsam auf Raumtemp. erwärmt wird, hellt sie sich wieder auf. Anschließend wird das Lösungsmittel i. Vak. entfernt. Das anfallende gelbe Öl wird mit etwas Ether versetzt und mit Pentan überschichtet, wobei es kristallisiert. Abzentrifugieren, Waschen mit Ether und Pentan und Trocknen i. Vak. liefern ein gelbes Pulver. trans-Cl₂Pt[NH(Cl)CH₂CO₂Et]₂ (**2a**): Ausb. 45%, Schmp. 98 °C (Zers.). – IR (KBr): $v = 3188 \text{ s cm}^{-1}$ (NH), 1725 ss (CO), 1555 m (δ NH), 339 s (PtCl). – ¹H-NMR ([D₆]Aceton): $\delta = 1.28$ (t, 3H, CH₂CH₃), 2.84 (s, 2H, α -CH₂), 4.26 (q, 2II, CH₂CH₃), 6.2 (br., 1H, NH).

 $C_8H_{16}Cl_4N_2O_4Pt$ (541.1) Ber. C 17.75 H 2.99 N 5.18 Gef. C 17.99 H 3.57 N 5.22

trans- $Cl_2Pt[NH(Cl)CH(CH_3)CO_2Et]_2$ (2b): Ausb. 41%, Schmp. 110°C (Zers.). – IR (KBr): v = 3190 s cm⁻¹ (NH), 1723 ss (CO), 1540 w (δ NH), 341 s (PtCl). – ¹H-NMR ([D₆]Aceton): δ = 1.29 (t, 3H, CH₂CH₃), 1.69 (d, 3H, α -CCH₃), 3.4 (q, 1H, α -CH), 4.29 (q, 2H, CH₂CH₃), 6.4 (br., 1H, NH).

 $\begin{array}{c} C_{10}H_{20}Cl_4N_2O_4Pt \ (569.2) \\ Gef. \ C \ 21.00 \ H \ 3.55 \ N \ 4.92 \\ Gef. \ C \ 21.04 \ H \ 4.05 \ N \ 5.14 \end{array}$

trans-Cl₂Pt[NH(Cl)CII(CH₂CHMe₂)₂CO₂Et]₂ (2c): Ausb. 59%, Schmp. 153°C (Zers.). – IR (KBr): $v = 3170 \text{ s cm}^{-1}$ (NH), 1718 ss (CO), 1535 s (δ NH), 342 s (PtCl). – ¹H-NMR ([D₆]Aceton): $\delta = 0.98$ [d, 6H, CH(CH₃)₂], 1.8–2.0 [m, 1H, CH(CH₃)₂], 1.30 (t, 3H, CH₂CH₃), 4.29 (q, 2H, CH₂CH₃), 6.1 (br., 1H, NH).

 $\begin{array}{c} C_{16}H_{32}Cl_4N_2O_4Pt \ (653.4) \\ Ber. \ C \ 29.41 \ H \ 4.95 \ N \ 4.29 \ Cl \ 21.70 \\ Gef. \ C \ 29.68 \ H \ 5.39 \ N \ 4.37 \ Cl \ 22.20 \end{array}$

trans-(4-Ethyliden-1,3-oxazolidin-2,5-dionato)hydridobis(triphenylphosphan)platin(II) (4a): 115 mg (0.90 mmol) 4-Ethyliden-1,3oxazolidin-2,5-dion¹³⁾ und 676 mg (0.90 mmol) (Ethylen)bis(triphenylphosphan)platin(0) werden in 10 ml Dichlormethan 24 h bei Raumtemp. gerührt. Die gelbbraune Lösung wird i. Vak. eingeengt, bis ein farbloser Niederschlag ausfällt. Dieser wird mehrmals mit Dichlormethan und Ether gewaschen und i. Hochvak. getrocknet. Ausb. 61%, Schmp. 218°C (Zers.). – IR (KBr): v = 1787 ss, 1726 ss cm⁻¹ (CO), 1655 ss (C=C), 2180 m (Pt-H). – ¹H-NMR (CDCl₃): $\delta = 2.10$ (d, 3H, CH₃), 5.03 (q, 1H, HC=C), -15.28 (t, $J^{1}H,^{31}P = 13.55$, $J^{1}H,^{195}Pt = 967$ Hz, 1H, PtH). – ³¹P-NMR (CDCl₃): $\delta = 34.06$ (s, 2P, Pt-P), 34.06 (d, J = 3054 Hz, 2P, ¹⁹⁵Pt,³¹P.

C₄₁H₃₅NO₃P₂Pt (846.8) Ber. C 58.15 H 4.17 N 1.65 Gef. C 57.59 H 3.79 N 1.66

trans-Hydrido(4-propyliden-1,3-oxazolidin-2,5-dionato)bis(triphenylphoshan)platin(II) (4b): 282 mg (2.0 mmol) des ungesättigten Leuchsschen Anhydrids¹³ werden mit 1.491 g (2.0 mmol) (Ethylen)bis(triphenylphosphan)platin(0) in 20 ml absol. Toluol bei Raumtemp. gerührt. Aus der zunächst klaren Lösung setzt sich nach kurzer Zeit ein farbloser Niederschlag ab. Nach ca. 30 min wird dieser abzentrifugiert und die überstehende Lösung in kaltes Hexan getropft, wobei ein hellgelber Niederschlag ausfällt. Dieser wird abzentrifugiert, mit Hexan gewaschen und i. Vak. getrocknet. Ausb. 35%, Schmp. 195°C (Zers.). – IR (KBr): v = 1794 ss, 1737 ss cm⁻¹ (CO), 1650 sh, 1630 m (C=C), 2185 w (PtH). $- {}^{1}H-NMR$ (CD₂Cl₂): $\delta = 1.09$ (t, 3H, CH₂CH₃), 2.27 (m, 2H, CH₂CH₃), -15.30 (t, $J^{1}H$, $J^{1}P = 13.68$, $J^{1}H$, $J^{195}Pt = 965$ Hz, 1 H, PtH). $- J^{1}P$ -NMR (Toluol): $\delta = 28.20$ (s, 2 P, Pt – P), 28.20 (d, J = 3053 Hz, 2 P, ¹⁹⁵Pt, ³¹P). C₄₂H₃₇NO₃P₂Pt (860.8) Ber. C 58.60 H 4.33 N 1.62 Gef. C 56.58 H 4.93 N 1.92

trans-(4-Benzyliden-1,3-oxazolidin-2,5-dionato]hydridobis(triphenylphosphan)platin(II) (4c): 115 mg (0.61 mmol) des entsprechenden Oxazolidindions¹³⁾ und 454 mg (0.61 mmol) (Ethylen)bis-(triphenylphosphan)platin(0) werden in 18 ml Dichlormethan 20 h bei Raumtemp. gerührt. Die klare gelbe Lösung wird eingeengt, wobei ein gelbes Öl anfällt. Dieses wird in wenig Dichlormethan aufgenommen und in Hexan gefällt. Der farblose Niederschlag wird abzentrifugiert, mit Hexan gewaschen und getrocknet. Weitere Rei-

nigung durch Chromatographie über eine Cellulose-Säule (CH₂Cl₂) liefert das analysenreine Produkt. Ausb. 36%, Schmp. 148°C (Zers.). – IR (KBr): v = 1790 ss, 1734 ss cm⁻¹ (CO), 1651 ss (C=C), 2183 m (Pt-H). - ¹H-NMR $(CDCl_3)$: $\delta = 5.26$ (s, 1H, (HC=C), -16.06 (t, $J^{1}H, {}^{31}P = 13.43, J^{1}H, {}^{195}Pt = 998$ Hz, 1 H, PtH). $-{}^{31}$ P-NMR (Toluol): $\delta = 28.56$ (s, 2P, Pt $-{}^{31}$ P), 28.56 (d, $2P, J^{195}Pt, {}^{31}P = 3052 Hz, {}^{195}Pt - {}^{31}P).$

$$\begin{array}{rrrr} C_{46}H_{37}NO_{3}P_{2}Pt \ 908.4) & & Ber. \ C \ 60.79 \ H \ 4.11 \ N \ 1.54 \\ & & Gef. \ C \ 60.58 \ H \ 4.26 \ N \ 1.63 \end{array}$$

 $(\eta^2$ -4-Propyliden- und 4-Isobutyliden-1,3-oxazolidin-2,5-dion)bis-(triphenylphosphan)platin(0) (5a und 5b): 1.0 mmol (142 mg) (für 5a) bzw. 155 mg (für 5b) des entsprechenden Oxazolidindions¹³⁾ und 1.0 mmol (747 mg) (Ethylen)bis(triphenylphosphan)platin(0) werden in 15 ml absol. Toluol 30 min bei Raumtemp, gerührt. Nach kurzer Zeit scheidet sich ein farbloser Niederschlag ab. Man zentrifugiert, wäscht den Niederschlag mit Toluol und trocknet i. Hochvak.

5a: Ausb. 65%, Schmp. 169°C (Zers.). – IR (KBr): v = 3300 $m cm^{-1}$ (NH), 1805 ss, 1736 ss (CO).

C₄₂H₃₇NO₃P₂Pt (860.8) Ber. C 58.60 H 4.33 N 1.62 Gef. C 58.61 H 5.14 N 1.91

5b: Ausb. 44%, Schmp. 176°C (Zers.). - IR (KBr): v = 3310s cm⁻¹ (NH), 1810 ss, 1738 ss (CO).

C₄₃H₃₉NO₃P₂Pt (874.8) Ber. C 59.04 H 4.49 N 1.60 Gef. C 58.61 H 4.80 N 1.52

Kristallstrukturbestimmung von $4c^{21}$: 4c (aus DMSO umkristallisiert) wurde als ein Bruchstück der Größe 0.50 · 0.20 · 0.25 mm³ i. Vak. in ein Markröhrchen eingeklebt. - Kristalldaten: $C_{46}H_{37}NO_{3}P_{2}Pt \cdot (CH_{3})_{2}SO, M = 987 \text{ g/mol, Raumgruppe Pnma}$ (Nr. 62), a = 1936(2), b = 1503(1), c = 1483(1) pm, V = 4.316(7)nm³, Z = 4, $\varrho_{ber} = 1.52 \text{ g} \cdot \text{cm}^{-3}$, $\mu(\text{Mo-}K_{\alpha}) = 68.81 \text{ cm}^{-1}$. – Datensammlung und Auswertung: Nicolet-R3-Diffraktometer, Meßtemperatur 25 °C, ω-Scan, 2Θ-Bereich 4-50°, Scangeschwindigkeit $4-30^{\circ}$ /min (Minimum bei I < 400, Maximum bei I > 3000 counts/s), 10815 Reflexe gemessen, zu 3560 unabhängigen gemittelt, davon 2059 beobachtet $[I > 2\sigma(I)]$, empirische Absorptionskorrektur anhand von 180 Messungen im \-Scan (min. Transmission 0.021, max. Transmission 0.049). - Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson- und Fourier-Recycling, 111 Parameter verfeinert (Pt, P anisotrop, die anderen Atome isotrop), Phenylringe des Phosphans als regelmäßige Sechsecke [der Phenylring des Anhydrids wurde wegen der speziellen Lage auf der Spiegelebene (y = 0.75) nicht als regelmäßiges Sechseck, sondern mit der gleichen C-C-Bindungslänge verfeinert], H-Atome in berechnete Lagen eingesetzt. Das an Platin gebundene Wasserstoffatom H(50) wurde auf der speziellen Lage y = 0.75verfeinert. $R = 0.0575, R_w = 0.0546 [w = 1/(\sigma^2(F) + 0.0006 \cdot F^2)],$ maximale Restelektronendichte $1.04 \cdot 10^{-6} e \cdot pm^{-3}$ im fehlgeordneten Dimethylsulfoxid.

CAS-Registry-Nummern

1a: 82474-52-0 / 1b: 82474-55-3 / 1c: 82474-56-4 / 2a: 114197- $114198-01-5 / 5a: 114198-02-6 / 5b: 114198-03-7 / (Ph_3)_2Pt(C_2H_4):$ 12120-15-9

- ¹⁾ XLV. Mitteilung: H. Wanjek, U. Nagel, W. Beck, Chem. Ber. 121 (1988) 1021.
- ²⁾ Kristallstrukturanalyse.
- ³⁾ N. Steiner, W. Beck, Chem. Ber., im Druck.
- 4) H. Poisel, U. Schmidt, Chem. Ber. 108 (1975) 2547; U. Schmidt, E. Öhler, Angew. Chem. 89 (1977) 344; Angew. Chem. Int. Ed. Engl. 16 (1977) 327; H. Poisel, Chem. Ber. 110 (1977) 942; E. Öhler, E. Prantz, U. Schmidt, ibid. 111 (1978) 1058.
- ⁵⁾ Yu. N. Kukushkin, Sov. J. Coord. Chem. 10 (1984) 159, und dort zitierte Literatur.
- ⁶⁾ Yu. N. Kukushkin, Zh. Neorg. Khim. 2 (1957) 2371.
- ⁷⁾ Yu. N. Kukushkin, Russ. J. Inorg. Chem. 6 (1961) 1242.
 ⁸⁾ Yu. N. Kukushkin, Yu. S. Varshavskii, Russ. J. Inorg. Chem. 11 (1966) 193.
- ⁹⁾ B. C. Lane, J. E. Lester, F. Basolo, Chem. Commun. 1971, 1618.
- ¹⁰ V. L. Goedken, *Chem. Commun.* 1972, 207.
 ¹¹ H. Bissinger, W. Beck, Z. Naturforsch., Teil B, 40 (1985) 507.
- ¹²⁾ W. Beck, H. Bissinger, M. Girnth-Weller, B. Purucker, G. Thiel, H. Zippel, H. Seidenberger, B. Wappes, H. Schönenberger, Chem. Ber. 115 (1982) 2256.
- ¹³⁾ C. G. Shin, Y. Yonezawa, J. Yoshimura, Chem. Lett. 1981, 1635; 1976, 1075.
- 14) C. G. Shin, Y. Yonezawa, M. Ikeda, Bull. Chem. Soc. Jpn. 59
- (1986) 3573, und dort zitierte Literatur. ^{15) I5a)} M. F. Lappert, P. P. Power, A. R. Sanger, R. C. Srivastava, Metal and Metalloid Amides, Ellis Horwood Ltd., Chichester 1980. – ^{15b)} H. Adams, N. A. Bailey, T. N. Briggs, J. A. Mc-Cleverty, H. M. Colquhoun, D. J. Williams, J. Chem. Soc., Dalton Trans. **1986**, 813. – ^{15c)} E. Schier, W. Sacher, W. Beck, Z. Na-turforsch., Teil B, **42** (1987) 1424, und dort zitierte Literatur.
- ¹⁶ D. M. Roundhill, *Inorg. Chem.* 9 (1970) 254.
 ¹⁷ T. Yamamoto, K. Sano, A. Yamamoto, *Chem. Lett.* 1982, 907; B. Nestler, E. Uhlig, Z. Anorg. Allg. Chem. 530 (1985) 199.
 ¹⁸ E. Leidl, U. Nagel, W. Beck, Chem. Ber. 116 (1983) 1370.
 ¹⁹ W. Duch, F. Andreck, H. Nacel, Chem. Ber. 118 (1985) 444

- ¹⁹⁾ W. Beck, E. Ambach, U. Nagel, Chem. Ber. 118 (1985) 444.
- ²⁰⁾ S. Krogsrud, L. Toniolo, U. Croatto, J. A. Ibers, J. Am. Chem. Soc. 99 (1977) 5277.
- ²¹⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52972, der Autoren und des Zeitschriftenzitats angefordert werden.

[44/88]